

Unit Outline (Higher Education)

Institute / School:	Institute of Innovation, Science & Sustainability			
Unit Title:	INTRODUCTION TO VIBRATION ANALYSIS			
Unit ID:	ENGIN3302			
Credit Points:	15.00			
Prerequisite(s):	(ENGIN2302)			
Co-requisite(s):	Nil			
Exclusion(s):	(ENMEC3120)			
ASCED:	030701			
Description of the Units				

Description of the Unit:

This unit introduces students to the aspects of mechanical vibration in a mathematical and theoretical context. The unit will employ experimental methods to highlight the concepts presented.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Introductory						
Intermediate						
Advanced			~			

Unit Outline (Higher Education) ENGIN3302 INTRODUCTION TO VIBRATION ANALYSIS

Learning Outcomes:

On successful completion of the unit the students are expected to be able to:

Knowledge:

- **K1.** Describe the behaviour of dynamic systems in the time domain.
- **K2.** Explain the transient response of vibrating system.
- **K3.** Relate experimental findings to the analytical model and system variables.
- **K4.** Describe dynamic systems in the frequency domain.
- **K5.** Discuss how vibration systems respond to a harmonic excitation.

Skills:

- **S1.** Demonstrate how computer algebra systems are employed for modelling and simulation.
- **S2.** Solve real engineering problems through symbolic, numeric and experimental dynamic analysis.
- **S3.** Evaluate analytical models and reflect on practice.
- **S4.** Work effectively, both independently and in teams.
- **S5.** Present findings in manners which can be appreciated by professional and lay people.

Application of knowledge and skills:

- **A1.** Test and evaluate an existing vibrating system.
- **A2.** Apply dynamic analysis techniques to a variety of real engineering applications.
- **A3.** Apply existing and developing knowledge and experience to the modelling and analysis of a variety of dynamic engineering systems.

Unit Content:

Topics may include:

- Mathematical background (linearization and Laplace Transforms)
- Mathematical description of mechanical systems
- Transient and free vibration
- Harmonically-Forced Vibration System and Resonance
- Vibration Isolation and Measurement

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1-K5, S1-S5, A1-A3	A modelling exercise based on a real-world problem that exposes the student to numerical modelling techniques.	Numerical project	40 - 60%
K1 - K5, S3	Assessment of all or part of the unit by examination.	Examination	40 - 60%

Alignment to the Minimum Co-Operative Standards (MiCS)

The Minimum Co-Operative Standards (MiCS) are an integral part of the Co-Operative University Model. Seven criteria inform the MiCS alignment at a Course level. Although Units must undertake MiCS mapping, there is NO expectation that Units will meet all seven criteria. The criteria are as follows:

- 1. Co-design with industry and students
- 2. Co-develop with industry and students
- 3. Co-deliver with industry
- 4. FedTASK alignment
- 5. Workplace learning and career preparation
- 6. Authentic assessment
- 7. Industry-link/Industry facing experience

MiCS Course level reporting highlights how each Course embraces the principles and practices associated with the Co-Operative Model. Evidence of Course alignment with the MiCS, can be captured in the Course Modification Form.

MICS Mapping has been undertaken for this Unit No

Date:

Adopted Reference Style:

Other (IEEE: Refer to the library website for more information)

Refer to the library website for more information

Fed Cite - referencing tool